Filter harmonik aktif shunt untuk mereduksi harmonik akibat charger sistem DC di unit pembangkit tenaga listrik
DOI:
https://doi.org/10.35313/jitel.v5.i1.2025.19-34Keywords:
harmonik, elektronika daya, filter aktif shunt, efisiensi, TDDAbstract
Charger sistem arus searah (DC) adalah perangkat yang bekerja mengonversi arus bolak-balik (AC) menjadi arus searah. Sistem ini menggunakan saklar elektronika daya yang dapat diatur untuk menghasilkan tegangan keluaran DC yang variatif. Perangkat ini pada pembangkit listrik digunakan untuk mengisi baterai dan menyuplai beban DC. Perangkat ini memiliki topologi rangkaian berupa penyearah terkendali tiga-fasa. Penyearah terkendali menarik arus sumber yang tidak linier karena proses switching dari thyristor, hal ini mengakibatkan distorsi harmonik pada sinyal arus yang ditarik. Distorsi sinyal arus ini menyebabkan beberapa masalah yang dapat mengurangi efisiensi dan keandalan sistem tenaga listrik. Studi ini memodelkan dan mensimulasikan filter harmonik aktif shunt untuk mengurangi harmonik. Filter ini menggunakan metode ekstraksi daya aktif reaktif sesaat dan kontrol arus histerisis pada inverter untuk mengurangi Total Demand Distortion (TDD) harmonik yang awalnya lebih dari 30% menjadi di bawah 5% berdasarkan pada standar IEEE 519-2022. Hasil simulasi menunjukkan efektivitas filter ini pada berbagai kondisi beban dapat mereduksi TDD harmonik dengan efektivitas sekitar 97%.
References
[1] M. F. Hasan, “Shunt Active Power Filter Untuk Eliminasi Hamonik Dan Kompensasi Daya Reaktif Pada Pengoperasian Crane,” Institut Teknologi Sepuluh Nopember, 2016.
[2] I. P. and Energy, “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE Std. 519-2014, vol. 2014, pp. 519–2014, 2014.
[3] Y. Rangelov, “Overview on Harmonics in the Electrical Power System,” Proc. Int. Sci. Symp. Electrical Power Engineering, 2014.
[4] R. Pinyol, Harmonics: Causes, Effects and Minimization, Barcelona: SALICRU White Papers, 2015.
[5] M. J. Ghorbani and H. Mokhtari, “Impact of Harmonics on Power Quality and Losses in Power Distribution Systems,” Int. J. Electr. Comput. Eng. (IJECE), 2015.
[6] I. M. W. Kastawan, “Pengaruh Harmonisa Arus Akibat Penggunaan Beban Non-Linier Terhadap Hasil Pengukuran kWhmeter Analog,” J. Tek. Energi, Politeknik Negeri Bandung, 2021.
[7] M. Davudi, S. Torabzad, and B. Ojaghi, “Analysis of Harmonics and Harmonics Mitigation Methods in Distribution System,” Aust. J. Basic Appl. Sci., vol. 5, pp. 996–1005, 2011.
[8] K. Gamit and K. Chaudhari, “Multi Phase Rectifier Using Difference Phase Shifting Transformer and its THD Comparison for Power Quality Issues,” in Proc. CGPIT, Gujarat, 2016.
[9] I. M. W. Kastawan, E. Yusuf, and A. Fadhilah, “Simulation of Source Current Harmonic Elimination Technique Using Phase Shifting Transformer,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 830, p. 032028, 2020, doi: 10.1088/1757-899X/830/3/032028.
[10] I. M. W. Kastawan, E. Yusuf, and A. Fadhilah, “Design of Phase-Shifting Transformer Based on Simulink Matlab Simulation,” Curr. J. Int. J. Appl. Technol. Res., vol. 1, no. 2, pp. 148–162, 2020, doi: 10.35313/ijatr.v1i2.30.
[11] V. Petrushyn, V. Horoshko, J. Plotkin, N. Almuratova, and Z. Toigozhinova, “Power balance and power factors of distorted electrical systems and variable speed asynchronous electric drives,” Electron., vol. 10, no. 14, 2021, doi: 10.3390/electronics10141676.
[12] F. N. Mumtaz, I. Sudiharto, and O. A. Qudsi, “Shunt Active Power Filter Untuk Peredaman Harmonisa Pada Inverter V/F Konstan Pengatur Kecepatan Motor Induksi Tiga Fasa,” JTT (Jurnal Teknol. Terpadu), vol. 9, no. 2, pp. 131–141, 2021, doi: 10.32487/jtt.v9i2.1176.
[13] D. N. Prabowo, M. Haddin, and D. Nugroho, “Reduksi Harmonisa Dengan Filter Aktif Shunt Berbasis MATLAB/Simulink,” Media Elektr., vol. 8, no. 2, pp. 20–34, 2015.
[14] H. Akagi, Instantaneous active and reactive power theory and applications. 2007. doi: 10.1201/b14924-7.
[15] S. Kumaresan and H. Habeebullah Sait, “Design and control of shunt active power filter for power quality improvement of utility powered brushless DC motor drives,” Automatika, vol. 61, no. 3, pp. 507–521, 2020, doi: 10.1080/00051144.2020.1789402.
[16] M. T. Alkhayyat, M. Y. Suliman, and F. F. Aiwa, “PQ & DQ based shunt active power filter with PWM & hysteresis techniques,” Prz. Elektrotechniczny, vol. 2021, no. 9, pp. 78–84, 2021, doi: 10.15199/48.2021.09.17.
[17] J. G. Pinto, B. Exposto, V. Monteiro, L. F. C. Monteiro, C. Couto, and J. L. Afonso, “Comparison of current-source and voltage-source Shunt Active Power Filters for harmonic compensation and reactive power control,” IECON Proc. (Industrial Electron. Conf., pp. 5161–5166, 2012, doi: 10.1109/IECON.2012.6389552.
[18] M. H. Rashid, Electric Renewable Energy Systems. 2015. doi: 10.1016/C2013-0-14432-7.
[19] M. Rastogi, R. Naik, and N. Mohan, “A Comparative Evaluation of Harmonic Reduction Techniques in Three-Phase Utility Interface of Power Electronic Loads,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1149–1155, 1994, doi: 10.1109/28.315225.
[20] F. Krim, “Parameters estimation of shunt active filter for power quality improvement,” 2011 5th Int. Power Eng. Optim. Conf. PEOCO 2011 - Progr. Abstr., no. June, pp. 306–311, 2011, doi: 10.1109/PEOCO.2011.5970393.
[21] A. A. Imam, R. Sreerama Kumar, and Y. A. Al-Turki, “Modeling and simulation of a pi controlled shunt active power filter for power quality enhancement based on p-q theory,” Electron., vol. 9, no. 4, 2020, doi: 10.3390/electronics9040637.
[22] M. A. A. M. Zainuri et al., “Photovoltaic integrated shunt active power filter with simpler ADALINE algorithm for current harmonic extraction,” Energies, vol. 11, no. 5, 2018, doi: 10.3390/en11051152.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhamad Surya Alfriana Alfriana, I Made Wiwit Kastawan, Wahyu Budi Mursanto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.