Analisis kondisi tunak dan simulasi konverter DC-DC buck-boost

Authors

  • Sofyan Muhammad Ilman Politeknik Negeri Bandung
  • Febi Ariefka Septian Putra Politeknik Negeri Bandung

DOI:

https://doi.org/10.35313/jitel.v4.i3.2024.231-238

Keywords:

keadaan tunak, buck-boost, duty cycle

Abstract

Energi baru terbarukan mengalami perkembangan yang sangat pesat, terutama pada teknologi yang ada pada konverter. Dengan mengalisis operasi kerja dari suatu konverter tersebut, maka kita dapat mengetahui karakteristik dari konverter. Pada penelitian ini penulis melakukan analisis keadaan tunak tegangan keluaran pada konverter DC-DC buck-boost yang mana konverter ini memiliki dua mode kerja saat mengatur besarnya persentase dari duty cycle. Tahap pertama yang dilakukan adalah mencari persamaan ketika sakelar konverter dalam kondisi ON dan OFF kemudian dimodelkan dalam persamaan kirchhoff voltage law (KVL) yang kemudian ketika persamaan tersebut diperoleh, maka tahap selanjutnya adalah mensubtitusikan persamaan KVL ketika sakelar ON dan OFF dalam waktu satu periode kemudian mengintegralkan dan menyederhanakannya. Sebagai bentuk validasi dari penurunan persamaan tersebut maka dilakukan simulasi menggunakan software PSIM. Hasil yang diperoleh adalah ketika tegangan pada induktor dengan waktu switching nol sampai  Ton adalah sebesar  Vs dan ketika waktu switching  Ton sampai  T sebesar -Vo, dan ketika duty cycle dibawah 50% konverter akan sebagai mode buck, ketika duty cycle diatas 50% konverter akan sebagai mode boost.

References

M. Lakshmi and S. Hemamalini, “Nonisolated high gain DC-DC converter for DC microgrids,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1205–1212, 2017, doi: 10.1109/TIE.2017.2733463.

P. Prabhakaran and V. Agarwal, “Novel Four-Port DC-DC Converter for Interfacing Solar PV-Fuel Cell Hybrid Sources with Low-Voltage Bipolar DC Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 2, pp. 1330–1340, 2020, doi: 10.1109/JESTPE.2018.2885613.

V. Karthikeyan, S. Kumaravel, and G. Gurukumar, “High Step-Up Gain DC-DC Converter with Switched Capacitor and Regenerative Boost Configuration for Solar PV Applications,” IEEE Trans. Circuits Syst., vol. 66, no. 12, pp. 2022–2026, 2019, doi: 10.1109/TCSII.2019.2892144.

T. G. T. Inverters, M. Das, S. Member, M. Pal, and V. Agarwal, “Novel High Gain , High Efficiency DC – DC Converter Suitable for Solar PV Module Integration With,” IEEE J. PHOTOVOLTAICS, vol. 9, no. 2, pp. 1–10, Jan. 2019.

M. Das and V. Agarwal, “Novel High-Performance Stand-Alone Solar PV System With High-Gain High-Efficiency DC-DC Converter Power Stages,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4718–4728, 2015, doi: 10.1109/TIA.2015.2454488.

S. Nagarjun, D. Debnath, and C. Chakraborty, “Buck-Boost Buck CCM-DCM Converter for PV Based DC Standalone System,” IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2018, vol. 1, no. 1, pp. 1–6, Dec. 2018, doi: 10.1109/PEDES.2018.8707723.

A. K. Chauhan, R. R. Kumar, M. Raghuram, and S. K. Singh, “Extended Buck-Boost derived hybrid converter,” IEEE Ind. Appl. Soc. Annu. Meet. IAS 2017, vol. 1, no. 1, pp. 1–8, Oct. 2017, doi: 10.1109/IAS.2017.8101766.

R. Nisha and K. Gnana Sheela, “Non Inverting Buck-Boost Converter with PV fed BLDC Drive for Irrigation,” in IEEE International Power and Renewable Energy Conference, IPRECON 2020, Oct. 2020, pp. 1–5. doi: 10.1109/IPRECON49514.2020.9315216.

M. Veerachary and V. Khubchandani, “Analysis, Design, and Control of Switching Capacitor Based Buck-Boost Converter,” in IEEE Transactions on Industry Applications, 2019, vol. 55, no. 3, pp. 2845–2857. doi: 10.1109/TIA.2018.2889848.

V. Trifa, G. Brezeanu, and E. Ceuca, “Worst-case input voltage in buck, boost and buck-boost converters,” in Proceedings of the International Semiconductor Conference, CAS, 2019, vol. 2019-Octob, no. 5, pp. 281–284. doi: 10.1109/SMICND.2019.8923845.

B. R. Kiran and G. A. Ezhilarasi, “Design and analysis of soft-switched Buck-Boost Converter for PV applications,” in 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 2016, no. 1, pp. 1–5. doi: 10.1109/INDICON.2015.7443509.

M. V. Vasudha Khubchandani, “Extended Bucking Range Fifth-Order Buck-Boost Converter,” in IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 2020, 2020, vol. 1, no. 1, pp. 2–7.

M. Veerachary and V. Khubchandani, “Design and Analysis of Fifth-order Buck-Boost Converter,” in IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), 2020, pp. 1–6.

T. Urkin and M. M. Peretz, “Unified current-programmed digital controller for non-inverting buck-boost converter with optimal steady-state and transient conditions,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, vol. 2019-March, pp. 199–206, 2019, doi: 10.1109/APEC.2019.8721978.

V. Samavatian and A. Radan, “A high efficiency input/output magnetically coupled interleaved buck-boost converter with low internal oscillation for fuel-cell applications: CCM steady-state analysis,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5560–5568, 2015, doi: 10.1109/TIE.2015.2408560.

Downloads

Published

2024-10-30

Issue

Section

Articles