Kendali Arus dan Tegangan Pada Konverter DC-DC Boost Dengan Metode Kaskade Proportional Integral Derivative
Keywords:
Dynamic, steady state, Kaskade PIDAbstract
Kendali diperlukan untuk konverter DC-DC pada implementasi berbagai bidang ketenagalistrikan dan industri. Penelitian ini mengusulkan kendali arus dan tegangan untuk konverter jenis boost berbasis kaskade PID. Tahap pertama yang dimulai dengan model dynamic dan steady state untuk konverter, hingga menentukan fungsi alih sistem dan pengendalian. Kendali kaskade PID dengan metode tuning zigler nichols II. Metode tuning yang dipakai dengan mengimplementasikan nilai gain K pada konverter untuk melihat osilasi sinyal keluaran untuk memperoleh parameter kendali PID (Kp, Ki dan Ti), lalu parameter hasil tuning kemudian dioptimasi kembali untuk mendapatkan peforma kendali yang lebih optimal. Simulasi ditampilkan untuk pembuktian konsep yang telah didesain. Hasil yang didapatkan yaitu kendali tegangan keluaran dapat menyesuaikan dengan tegangan setpoint dengan skenario tegangan sumber yang berubah, kendali arus dapat menjajaki arus referensi dengan skenario beban yang berubah, dan tegangan keluaran dapat menjajaki nilai setpoint yang berubah. Hasil respon kendali tegangan keluaran dan arus yaitu risetime, settlingtime dibawah 0,5s, kurang dari 5%, dan error 5% untuk kendali tegangan.
References
S. Sadaf, N. Al-Emadi, P. K. Maroti, and A. Iqbal, “A New High Gain Active Switched Network-Based Boost Converter for DC Microgrid Application,” IEEE Access, vol. 9, pp. 68253–68265, 2021, doi: 10.1109/ACCESS.2021.3077055.
M. Samiullah, A. Iqbal, I. Ashraf, and S. Rahme, “Split Duty Super Boost Converter for High Voltage Applications in a DC Microgrid,” IEEE Access, vol. 9, pp. 101078–101088, 2021, doi: 10.1109/ACCESS.2021.3097887.
Y. Huangfu, S. Zhuo, F. Chen, S. Pang, D. Zhao, and F. Gao, “Robust Voltage Control of Floating Interleaved Boost Converter for Fuel Cell Systems,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 665–674, 2018, doi: 10.1109/TIA.2017.2752686.
S. A. Gorji, “Reconfigurable Quadratic Converters for Electrolyzers Utilized in DC Microgrids,” IEEE Access, vol. 10, no. September, pp. 109677–109687, 2022, doi: 10.1109/ACCESS.2022.3214581.
H. Li et al., “A Describing Function-Based Stability Analysis Method for Cascaded DC-DC Converters,” IEEE Open J. Ind. Electron. Soc., vol. 3, no. July, pp. 484–495, 2022, doi: 10.1109/OJIES.2022.3191906.
J. Jongudomkarn, J. Liu, Y. Yanagisawa, H. Bevrani, and T. Ise, “Model Predictive Control for Indirect Boost Matrix Converter Based on Virtual Synchronous Generator,” IEEE Access, vol. 8, pp. 60364–60381, 2020, doi: 10.1109/ACCESS.2020.2983115.
L. Guo, J. Y. Hung, and R. M. Nelms, “Comparative evaluation of sliding mode fuzzy controller and PID controller for a boost converter,” Electr. Power Syst. Res., vol. 81, no. 1, pp. 99–106, 2011, doi: 10.1016/j.epsr.2010.07.018.
U. Sadek, A. Sarjaš, R. Sve?ko, and A. Chowdhury, “FPGA-based control of a DC-DC boost converter,” IFAC, vol. 28, no. 10, pp. 22–27, 2015, doi: 10.1016/j.ifacol.2015.08.102.
K. Sharma and D. K. Palwalia, “Design of digital PID controller for voltage mode control of DC-DC converters,” 2017 Int. Conf. Microelectron. Devices, Circuits Syst. ICMDCS 2017, vol. 7, no. 7, pp. 1–6, 2017, doi: 10.1109/ICMDCS.2017.8211715.
G. Abbas, M. A. Samad, J. Gu, M. U. Asad, and U. Farooq, “Set-point tracking of a DC-DC boost converter through optimized PID controllers,” Can. Conf. Electr. Comput. Eng., vol. 2016-October, pp. 1–5, 2016, doi: 10.1109/CCECE.2016.7726841.
C. L. Remes, G. R. G. Da Silva, A. Treviso, M. A. J. Coelho, and L. Campestrini, “Data-driven approach for current control in DC-DC boost converters,” IFAC-PapersOnLine, vol. 52, no. 1, pp. 190–195, 2019, doi: 10.1016/j.ifacol.2019.06.059.
J. Ren, D. X. Liu, K. Li, J. Liu, Y. Feng, and X. Lin, “Cascade PID controller for quadrotor,” IEEE Int. Conf. Inf. Autom. IEEE ICIA 2016, vol. 1, no. 1, pp. 120–124, 2016, doi: 10.1109/ICInfA.2016.7831807.
E. Tridianto, T. H. Ariwibowo, S. K. Almasa, and H. E. G. Prasetya, “Cascaded PID temperature controller for FOPDT model of shell-and-tube heat exchanger based on Matlab/Simulink,” Proc. IES-ETA 2017 - Int. Electron. Symp. Eng. Technol. Appl., vol. 1, no. 1, pp. 185–191, 2017, doi: 10.1109/ELECSYM.2017.8240400.
H. P. Ren, X. Guo, Y. C. Zi, and J. Li, “Double loop control of boost converter based current switching controller and voltage compensator,” Proc. 2015 7th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2015, vol. 7, no. 7, pp. E11–E16, 2015, doi: 10.1109/ECAI.2015.7301145.
J. Z. Zhong Wu, Jianhui Zhao, “Cascade PID Control of Buck-Boost-Type,” World Congr. Intell. Control Autom., vol. 6, no. 6, pp. 8467–8471, 2006.
R. Alzate, V. A. Oliveira, R. F. Q. Magossi, and S. P. Bhattacharyya, “Double Loop Control Design for Boost Converters Based on Frequency Response Data,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10413–10418, 2017, doi: 10.1016/j.ifacol.2017.08.1968.
S. M. Ilman, F. Ariefka, and S. Putra, “Pemodelan dinamis dan kendali multi-loop konverter DC-DC boost dengan pengendali PI,” J. Ilm. Telekomun. Elektron. dan List. Tenaga, vol. 3, no. 1, pp. 47–56, 2023.
D. W. Hart, Power Electronics. US: Mc Graw Hill, 2011.
Published
Issue
Section
License
Copyright (c) 2023 sofyan muhammad ilman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.